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[1] The surface skin temperature is a key parameter at the land-atmosphere interface. An
accurate description of its diurnal cycle would not only help estimate the energy
exchanges at the interface, it would also enable an analysis of the global surface skin
diurnal cycle and its variability within the last 20 years. This study is based on the
3-hourly surface skin temperature estimated by the International Satellite Cloud
Climatology Project (ISCCP) from the infrared measurements collected by the polar and
geostationary meteorological satellites. The diurnal cycle of surface skin temperature is
analyzed almost globally (60N–60S snow-free areas), using a Principal Component
Analysis. The first three components are identifyed as the amplitude, the phase, and the
width (i.e., daytime duration) of the diurnal cycle and represent 97% of the variability.
PCA is used to regularize estimates of the diurnal cycle at a higher time resolution. A new
temporal interpolation algorithm, designed to work when only a few measurements of
surface temperature are available, is developed based on the PCA representation and an
iterative optimization algorithm. This method is very flexible: only temperature
measurements are used (no ancillary data), no surface model constraints are used, and the
time and number of measurements are not fixed. The performance of this interpolation
algorithm is tested for various diurnal sampling configurations. In particular, the
potential to use the satellite microwave observations to provide a full diurnal surface
temperature cycle in cloudy conditions is investigated. INDEX TERMS: 3322 Meteorology and

Atmospheric Dynamics: Land/atmosphere interactions; 3360 Meteorology and Atmospheric Dynamics:

Remote sensing; KEYWORDS: surface skin temperature, diurnal cycle, temporal interpolation
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1. Introduction

[2] A global data set of surface skin temperature provid-
ing information on the whole diurnal cycle would constitute
a valuable source of information at the land-atmosphere
interface. Two main applications of such a data set can be
identified.
[3] First, the surface skin temperature could be used to

evaluate surface models. Land surface temperature and its
difference with the temperature of the overlying air mass
govern the exchange of energy and water fluxes at the land-
atmosphere interface. Coupled land-atmosphere climate
models (Soil/Vegetation/Atmosphere Transfer (SVAT)) are

usually forced by in situ surface air temperature measure-
ments, and then they predict land surface skin temperatures.
Adequate measurements of the land surface skin tempera-
ture over the whole diurnal cycle would not only enable
model evaluation, it could also provide an additional con-
straint on latent and sensible heat flux calculations.
[4] The second main application of a surface skin tem-

perature data set is related to climate change studies.
Routine in situ observations of the surface air temperature
at meteorological stations are currently the primary source
of information to estimate global climate change. They
show an increase in the mean global temperature over the
last century with an increased rate over the last 20 years
[e.g., Hansen et al., 1999; Jones et al., 1999]. Closer
analysis shows that the temperature change is different for
the daily maxima and minima, resulting in a damping of the
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diurnal temperature amplitude [e.g., Karl et al., 1993;
Easterling et al., 1997]. However, incomplete space and
time coverage complicates the analysis of global trends
from the meteorological network.
[5] The surface skin temperature Ts is not conventionally

observed by the meteorological weather station network,
although it could be determined from observations with an
infrared radiometer, provided that the land surface emissiv-
ity is known. Ts can be estimated from satellite infrared
radiance observations. Instruments like AVHRR on board
polar orbiters provide good spatial resolution with a limited
time sampling (two overpasses per day per location),
whereas radiometers on board geostationary weather satel-
lites offer adequate sampling of the diurnal cycle but with a
poorer spatial resolution. The main problem of satellite
infrared measurements of surface skin temperature is their
inability to penetrate clouds, limiting them to clear con-
ditions. Clouds not only cover more than half of the globe at
a given time, they also alter the radiative energy exchanges,
reducing surface insolation and increasing the downward
longwave radiation, both of which reduce the diurnal
temperature amplitude.
[6] The most extensive data set of land skin temperature

available is produced since 1983 at 3-hour intervals over the
globe, every 30 km, by the International Satellite Cloud
Climatology Project (ISCCP) [Rossow and Schiffer, 1999].
It combines all the infrared measurements from polar and
geostationary operational weather satellites, yielding full
coverage of the globe. Based on infrared measurements,
these results are limited to clear-sky conditions [Rossow and
Garder, 1993], although a statistical estimation is provided
for the skin temperature for cloudy scenes. Although the
3-hourly sampling of the ISCCP data set resolves the diurnal
cycle, this sampling is performed at constant universal
times, not at constant local times. Hence the representation
of the diurnal Ts cycle varies in quality with longitude.
[7] Recently, a neural network inversion scheme, includ-

ing first-guess information, has been developed to retrieve
the surface skin temperature over land from passive
microwave and infrared radiance observations [Aires et
al., 2001; Prigent et al., 2003a; 2003b] using predeter-
mined monthly mean microwave emissivities [Prigent et
al., 1997, 1998], ISCCP cloud and surface parameters
[Rossow and Schiffer, 1999], and the meteorological
analysis from National Center for Environmental Predic-
tion (NCEP) [Kalnay et al., 1996] as first guess informa-
tion. This technique was developed specifically to extend
the clear-sky-limited ISCCP results to cloudy situations.
However, the microwave observations extracted from the
Special Sensor Microwave Imager (SSM/I) on board the
Defense Meteorological Satellite Program (DMSP) polar
orbiters do not provide the adequate time sampling for a
full description of the surface skin temperature cycle under
cloudy conditions.
[8] The objective of this study is to develop a method to

reconstruct the complete daily surface skin temperature
diurnal cycle over the globe from a limited number of
observations for both clear and cloudy conditions, based
on a statistical analysis of the observations data sets rather
than model calculations. Ignatov and Gutman [1999]
already suggested a statistical method to derive monthly
mean Ts diurnal cycle over land based on a lower spatial

and time resolution ISCCP product (the monthly mean
data set with a spatial resolution of 280 km). Jin and
Dickinson [1999] supplement the limited time sampling of
polar orbiter infrared measurements for clear pixels with
an analysis of the surface skin diurnal cycle from model
simulations and experiment campaigns. To estimate sur-
face skin temperatures from infrared measurements in
cloudy conditions, Jin [2000] and Jin and Dickinson
[2000] propose a technique that uses both neighboring
(in time or space) clear pixels and the surface energy
balance, combined with an adjustment derived from sur-
face air temperature estimates for pixels under extended or
quasi-permanent cloud cover. This method relies on pa-
rameterized diurnal cycle shapes dependent on ancillary
information such as soil moisture, vegetation, cloud prop-
erties, season, and latitude. In a recent study, Vinnikov et
al. [2002] use a harmonic representation of the diurnal
cycles of the surface air temperatures at selected meteoro-
logical stations to developed a technique to study seasonal
cycles of climatic trends.
[9] This paper focuses on the technical aspects of the

temporal interpolation of surface skin temperature diurnal
cycles under clear and cloudy conditions. A new method-
ology is presented and tested in various experiments, some
for real conditions, some with synthetic cases to be able to
check the results. No surface model constraint or ancillary
data are used; only surface skin temperature measurements
themselves are required by the technique. This is particu-
larly important for studying the impact on surface temper-
ature of surface parameters like vegetation or soil moisture.
Furthermore, the number of satellite surface skin temper-
ature measurements will increase with new instruments
(AQUA, TERRA) and our approach, able to deal with
variable time and number of measurements, is flexible
enough to process such new observations. The interpola-
tion works for daily or monthly diurnal cycles. The method
is flexible enough to allow the use of any kind of a priori
information. The interpolation technique that is developed
is general and can be used in many other contexts like
spatial interpolation instead of temporal interpolation and
for different variables. (In the spatial interpolation prob-
lem, the PCA/iterative approach developed in this paper
would be identical, except that the PCA is performed on
fields instead of time series, i.e., the diurnal cycles. In this
case, the base function are called EOFs (Empirical Or-
thogonal Functions.) The ISCCP data set is used (section 2)
to infer a statistical representation of the diurnal cycle (see
Cairns [1995] for a similar application for an analysis of
the diurnal variation of clouds). The statistical analysis
serves several purposes: relating diurnal cycle features to
surface and other characteristics, suppressing part of the
noise in the measurements (from instrumental noise, re-
trieval errors, or sampling problems), interpolating the
diurnal cycle when data are missing especially for mea-
surements derived from polar orbiting instead of geosta-
tionary satellites. Interpolation algorithms are presented in
section 3. Various experiments are performed for clear sky
conditions to evaluate these algorithms (section 4). Syn-
thetic experiments are also presented to check the exten-
sion to cloudy cases. The potential of past and future
microwave instruments for the reconstruction of the diurnal
cycle of surface skin temperature is then investigated. The
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conclusions and perspectives of this work are given in
section 5.

2. Statistical Analysis of the Surface Skin
Temperature Diurnal Cycle

2.1. ISCCP Database of Surface Skin Temperature

[10] The ISCCP data set is used as a sampling database to
estimate the main statistical features of the surface skin
temperature diurnal cycles. The ISCCP algorithm discrim-
inates between clear and cloudy scenes and cloud param-
eters and related quantities are retrieved from visible (VIS
�0.6 mm wavelength) and infrared (IR �11 mm wavelength)
radiances provided by the set of polar and geostationary
meteorological satellites [Rossow and Schiffer, 1999]. Cal-
ibration issues are carefully reviewed (orbital drift, instru-
ment intercalibration): a consistent analysis is provided of
the satellite measurements for up to seven satellite simulta-
neously in orbit, over more than 20 years [Brest and
Rossow, 1992; Desormeaux et al., 1993]. Surface skin
temperature Ts is retrieved from the IR radiance under clear
conditions. The original ISCCP product contains values of Ts
retrieved assuming that the surface emissivity is unity
everywhere. These values are corrected using an emissivity-
type specification from the Goddard Institute for Space
Studies general circulation model. In any case this correction
does not affect the diurnal cycle. If the ISCCP DX scenes are
cloudy, a clear-sky compositing procedure is conducted
within the ISCCP analysis to derive an estimate of the
surface temperatures under cloudy conditions (see Rossow
and Garder [1993] for more details). The pixel level data set
(the DX data set) is selected for its spatial sampling of about
30 km and its sampling interval of 3 hours [Rossow et al.,
1996]. The 1999 year is chosen because the presence of
Meteosat 5 instrument over India provides more complete
coverage. This study will focus on temperature diurnal
cycles of land surfaces. Ts diurnal cycles over ocean have
a much smaller amplitude compared to the uncertainty in
any Ts measurements and different approaches would be
required. (For example, one could try to determine first the
minimum and maximum temperatures over the day to
estimate the amplitude of the cycle and then fit a simple
shape to the mean-level and amplitude characteristics.)

2.2. Spline Interpolation

[11] The first step in the processing of the DX diurnal
cycle of surface skin temperature converts the GMT times
of ISCCP values to local times to enable direct comparison
of diurnal cycles at different locations. Second, the 3-hourly
ISCCP values are interpolated at a higher temporal resolu-
tion for a more accurate description of the diurnal cycle.
Cubic Spline Interpolation [Press et al., 1992] is used for
interpolation to 1-hour intervals, similar to the method used
by Ignatov and Gutman [1999]. Piecewise linear interpola-
tion has zero second derivative in the interior of each
interval and an undefined second derivative at the measure-
ments points. In contrast, the goal of cubic spline interpo-
lation is to obtain an interpolated curve that has smoothed
first derivatives and continuous second derivatives (within
the intervals and at the measurement points). Writing down
these constraints, a system of linear equations is defined that
gives, when solved, the interpolation values.

[12] Figure 1 presents two examples of such spline
interpolations, along with the corresponding linear interpo-
lation. The linear interpolation tends to damp the diurnal
cycle amplitude, whereas the spline interpolation partially
avoids this problem by allowing cubic curvatures between
the original points. The diurnal amplitude of the spline-
interpolated estimates can thus be larger than the amplitude
in the original ISCCP Ts, and the time of maximum and
minimum values are more reliably located on the cycle
interpolated by cubic spline.

2.3. Principal Component Analysis

[13] The statistical characteristics of the surface skin
temperature diurnal cycle are described so as to account
for the variability of the diurnal cycle as completely as
possible. An Independent Component Analysis approach
[Aires et al., 2000, 2002a] could have been used to analyze
the statistical regularities of the Ts diurnal cycle regularities,
but a more traditional Principal Component Analysis (PCA)
is adequate for this application, as will be shown.
[14] Let D = {ye; e = 1, . . ., E} be a database of E diurnal

cycles, y, of dimension M = 24. We note y to be a generic
diurnal cycle; it can represent a daily observation, yd, or a
monthly-mean diurnal cycle, ym (see Notation section). In

Figure 1. Two samples of the interpolation of a 3-hourly
ISCCP surface skin temperature, y, into a 1-hourly cycle,
using cubic spline and linear interpolations.
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the following, we will denote diurnal cycles, i.e., a vector,
with lower case letter, y, and the ‘‘mean-level’’ of the
diurnal cycle, i.e., a scalar, with capital letter, Y (see
Notation section). Let � = < (y � hyi) � (y � hyi)t > be
the M � M covariance matrix of D, where h�i represents the
mathematical expectation. Let V be the M � M matrix with
columns equal to the eigenvectors of � and let L be the
diagonal M � M matrix with the M associated eigenvalues
in decreasing order (by definition � � V = V � L).
[15] We define the M � M filter matrix F = L�1/2 � Vt. For

convenience, we also denote G = F�1. The matrix F is used
to project diurnal cycles, y, onto a new orthonormal base
composed of the columns of G, {F8i; i = 1, . . ., M}:

h ¼ F � y ¼ F1? � y1 þ . . .þ FM? � yM

y ¼ F�1 � h ¼ G � h ¼ G?1 � h1 þ . . .þ G?M � hM ;

8<
: ð1Þ

where t is the transpose operator. The vectors {Fi8; i = 1,
. . ., M}, i.e., rows of F, are called the filters, and the
normalized eigenvectors {Gi8; i = 1, . . ., M} are called the
PCA basis functions. These eigenvectors are an orthogonal
basis set for representing the diurnal cycles, y. By definition,
the elements of the new data h are uncorrelated, since

hh � hti ¼ hF � y � yt � Fti ¼ hF �
X

�Fti ¼ IM�M : ð2Þ

[16] Practically, the first step in a PCA analysis is to
compute the 24 � 24 covariance matrix � of the database of
the diurnal cycles y composed of the 24 local hours. The
eigenvalue matrix L and the corresponding eigenvectors V
of this covariance matrix � are then computed using a
Cholesky or a Singular Value Decomposition (SVD).
2.3.1. PCA of the Ts Diurnal Cycle
[17] The PCA is performed globally to determine generic

(global) base functions that can be used for analysis or for
interpolation of the diurnal cycles. The PCA is applied on
the global data set, over land and ocean, for a whole year of
spline-interpolated monthly mean ISCCP Ts diurnal cycles
(year 1999). To avoid any confusion, we define the monthly
mean diurnal cycle as the vector whose elements are the
monthly mean temperatures at the local times. Only loca-
tions with complete diurnal cycles (eight daily measure-
ments) are used for the PCA (Table 1). The latitudinal range
is also limited to areas between �60� and +60� to avoid, as
much as possible, snow-covered pixels that would require a
study by itself [Prigent et al., 2003b]. Previous works have
performed separate statistical analyses of diurnal cycles for
different latitudes, vegetation types, and seasons. Global
and all-season data are used here to avoid any discontinu-
ities. Such a global analysis makes it possible to study the
link between the PCA components and the surface charac-
teristics. The statistical sampling provided by a year of
global data generates an effective time resolution that is
higher than the original 3-hour ISCCP time sampling.
[18] The monthly mean diurnal cycle data, ym, are first

centered: the mean level of the monthly mean cycle Ym =
hymi is subtracted from each monthly mean diurnal cycles
ym. For each location and each month, the mean level, Ym,
of the monthly mean surface skin temperature diurnal cycle
is stored for later use with the PCA base functions for the

interpolation algorithms described in section 3. Without this
preprocessing step (results not shown here), the first PCA
components are determined by the regional and seasonal
variations of the mean level Ym but contaminated by other
information such as the amplitude, phase, or width (i.e.,
daytime duration) of the diurnal cycle. This makes the
physical interpolation of the PCA components most diffi-
cult. Subtracting the mean level of the diurnal cycle before
performing the PCA is equivalent to constraining the first
PCA base function to represent the variations of Ym. This
allows a ‘‘cleaner’’ interpretation of the PCA components
and insures the generality of their meaning globally.
[19] The PCA is then applied to the centered data set. We

do not use any normalization (analyzing the correlation
matrix instead of the covariance matrix �) to emphasize
local times that have more variability. The first three
components represent 92.83, 2.36, and 1.90% of the total
variability, respectively, a total of 97%. In order to obtain a
satisfactory level of precision, the second and third PCA
component that represent together more than 4% of the
variability cannot be neglected. Furthermore, we have
shown in Figure 4 that they have a physical meaning and
are useful to modify the first PCA component shape in
terms of time shifting or width adjustment. Each of the
higher-order components represents less than 1% of the
variability. Given that there is some noise in the ISCCP
cycles interpolated by cubic spline, 97% of variability
explained with the first three components is adequate for
an accurate description of the cycles. Discarding the other
components effectively suppresses measurement and fitting
noise [Aires et al., 2002b]. The resulting PCA base func-
tions are presented in Figure 2.
[20] The RMS difference between the spline-interpolated

ISCCP data and its PCA representation (called ‘‘PCA-
reconstructed’’ in the following) is shown in Figure 3. By
projecting the observed cycle onto the first three PCA
components, we deliberately suppress the variability of
the cycle not associated to these three components. Less
than 1 K RMS difference is observed, confirming that three
PCA components, i.e., three degrees of freedom (four if we
count the mean-level of the diurnal cycle), are enough to
describe the diurnal cycle. Note that the RMS error repre-
sents the statistics for a very large data set where each
diurnal cycle sample has different time measurements.
2.3.2. Interpretation of the Ts Diurnal Cycle PCA
[21] The effect of a variation of each of the three

components on the diurnal cycle is illustrated in Figure 4.

Table 1. Statistics of Missing Values for Monthly Mean DX

Diurnal Cycles Under Clear Sky Conditions

Number of
Missing Data
in Monthly

Mean Diurnal
Cycle

Percentage of
Pixels for

Ocean (1 Month)

Percentage
of Pixels for

Land (1 Month)

0 60.55 58.05
1 5.12 9.48
2 15.25 20.90
3 10.45 8.60
4 4.53 2.47
5 1.97 0.38
6 1.30 0.07
7 0.72 0.03
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The first component describes the amplitude of the diurnal
cycle. The second represents an information on the local
time of maximum temperature (phase shifting). The third
component relates to the duration of daytime part of
the diurnal cycle. Note that the effect of one PCA compo-

nent interacts with that of the other components. For
example, the phase component h2 will not have the
same effect when the amplitude component h1 is higher or
lower. Although the PCA components are calculated to be
decorrelated, it does not mean that they do not interact with
each other. As a consequence, the interpretation of one of
the components is dependent on the value of the other
components (in particular the first one).
[22] The maps of the PCA components (not shown) have

realistic spatial structures coherent with our interpretation of
the three first PCA components. Linear correlation coeffi-
cients larger than �0.96 are found for the map of the first
PCA component and the diurnal Ts amplitude for all months
in 1999. The map is well correlated to surface character-
istics, essentially vegetation density. The second PCA
component is less structured. The third component associ-
ated with the duration of the daytime portion of the diurnal
cycle shows strong latitudinal and seasonal variations as
expected.
[23] The PCA base functions are able to describe a large

variety of diurnal cycle shapes. Six examples of the PCA
representation of diurnal cycles are given in Figure 5, using
the first three components. Although most diurnal cycles
can be correctly described by the PCA projection, cycles
that have more irregular shapes and that are not frequently
represented in the data base cannot be accurately well
reconstructed from the PCA. The PCA representation acts
as a filter that keeps only the ‘‘regular’’ part of the diurnal
variability in the ISCCP data.
[24] In order to interpolate a time series with irregularly

and incomplete time sampling and with other sources of
variability, the chosen method needs to use two sources of
information: the measurements and a priori information
about the shape of the diurnal cycle. Any method will use
a compromise of these two sources of information. The
compromise means that the PCA representation of the
diurnal cycle at the measurement times can be slightly
different than the actual measurement. This is the conse-
quence of the shape that is imposed: the regularities in the
curvature might force the diurnal cycle to pass through the
neighborhood of actual measurements only. If the user of

Figure 2. From top to bottom, the first three PCA base
functions, g1, g2 and g3, of surface skin temperature diurnal
cycle.

Figure 3. Root mean square differences between the
1-hourly spline interpolated diurnal cycles, ys, and the PCA
reconstructed cycles.
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the interpolation algorithm does not want this behavior, he
can simply use the interpolated values at the times that
have no measurements and keep those measurements
unmodified with the risk of generating jumps in the Ts
cycles. This would give a zero level for the measurement
times. Note however that this approach confuses synoptic

variations (and measurement errors) with the diurnal
variation, whereas our approach separates out the
diurnal cycle from other variations using the shape derived
from the statistics. It should also be remembered that we
interpolate on remotely sensed measurements. The noise
level associated with these measurements is close to 2 K

Figure 4. Effect of the first three PCA components: for component h1 representing diurnal amplitude
information, component h2 representing lag of maximum of diurnal cycle, and component h3 representing
a diurnal cycle width information.
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RMS, if not more. That means that the actual measurements
can be quite distant from the real cycle. Using a PCA
representation can be considered, in this context, as a
denoising technique (see Aires et al. [2002b] for another
application of PCA to suppress noise in measurements). The
PCA representation can correct the measurement and a
smaller RMS difference would consequently be present.
Examples of this situation are provided in Figure 5 which
still exhibit quite good results.
[25] The following analysis is based on 1 year (1999)

of the DX diurnal cycles projected into the first three
PCA components providing diurnal cycles of Ts with
1-hour time resolution. Figure 6 shows the Ts diurnal
cycles for different vegetation types in January and July
1999 between latitudes 40�N and 45�N. For each loca-
tion, the mean daily Ts is subtracted. Whatever the
season, the amplitude of the Ts cycle decreases with
increasing vegetation density. For a given vegetation type,
changes from winter to summer are primarily driven by
the solar flux with the amplitude of the Ts cycle increas-
ing with solar flux and the width of the cycle increasing
with the length of the day. The averaged Ts cycles for
4 different months are presented in Figure 7 for shrub-
lands between 40�N and 45�N: The normalized shape of
the diurnal cycle clearly shows that the width of the cycle
increases from winter to summer. For a given latitude
range, the width of the Ts diurnal cycle is related to
the length of the day but is also modulated by the
vegetation/soil moisture characteristics (see Figure 6).
The width of the diurnal cycle is calculated as the time
in hours that separates the two times during the day when
Ts is equal to the mean Ts. Figure 8 shows the latitudinal
mean width of the cycle along with the calculated length
of the day and the mean PCA third component for

January and July 1999. The standard deviations for each
latitude zone are also indicated (except for the calculated
length of the day).

3. Algorithms for the Temporal Interpolation of
Ts Diurnal Cycle

[26] In practice, analysis of the diurnal cycle of a specific
meteorological variable is often limited by the time sam-
pling of the available measurements. Most studies on the Ts
diurnal cycle are based on observations derived from instru-
ments on board polar orbiting satellite with a typical
sampling rate of twice a day [e.g., Lakshmi et al., 1998;
Jin and Dickinson, 1999].
[27] Interpolation problems are a particular application of

the inverse problem theory [Tarantola, 1987] from which
many useful concepts can be derived, such as the concept of
a priori information that we will use in the following.
Various methods have been developed to interpolate the Ts
diurnal cycles from a limited number of Ts estimates a day.
For example, in the work of Jin and Dickinson [1999], a
linear regression on the minimum and maximum Ts is used
to estimate the temperature at other times. This assumes that
the minimum and maximum temperatures are known. The
following sections will investigate more general algorithms
able to work in more diverse conditions.

3.1. Estimation of the Mean Level of the Diurnal Cycle

[28] In the following, �y is the incomplete temperature
diurnal cycle observation. For example, the ISCCP diurnal
cycle averaged each 3 hours on a monthly basis still has
missing data for some locations (Table 1) that need to be
interpolated. �y can also be the observations of a microwave
instrument such as SSM/I.

Figure 4. (continued)
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[29] The mean level has been subtracted from the diurnal
cycle, y, before using the PCA (section 2.3.1), and in order
to use the PCA decomposition for the interpolation of the
diurnal cycle, estimation of this mean level is the first step.
Since �y is incomplete, estimating Yd by �Y = h�yi is not
optimal. A simple solution would be to estimate Yd by using
Ym, the mean level of the monthly mean diurnal cycle at
the same location, but global statistics show that the RMS
of Yd � Ym is 1.92 K, i.e., far from negligible (Table 2).
[30] A bias, b, between the monthly mean cycle, ym, and

the incomplete daily cycle, �y, can be estimated using only the
local times available in �y (1, 2, or more measurements). The
mean level Yd of the daily diurnal cycle is then estimated by
~Yd = Ym + b. The quality of this estimation has been tested as
a function of the number of missing values in �y. The second
column of Table 2 reports the RMS error of Yd � ~Yd for
increasing number of missing values (first column). For no
missing values, Yd is perfectly estimated, being just the
average of the eight 3-hourly DX temperatures. The RMS
estimation error increases from 0.26 K, for one missing
value, to 1.92 K, when all eight values are missing (i.e.,
when ~Yd is just equal to Ym). The third column of Table 2
reports the RMS of b = ~Yd � Ym, the RMS difference
between the estimate ~Yd and Ym. The RMS difference
between the estimate ~Yd and the a priori information Ym

increases from 1.92 K, when there is no missing values, to
2.66 K, when seven values are missing. This corresponds to
the RMS from the estimation error ~Yd � Yd and from the
difference between Yd and Ym. When eight values are
missing, Yd is estimated by Ym so the RMS is zero.
[31] These statistics show that it is possible to estimate

the mean level of the daily diurnal cycle with a satisfactory
level of quality when values are missing using this ‘‘bias
estimate under incomplete observation’’ method. However,

the quality deteriorates with an increasing number of
missing values as expected. This approach can be used in
clear or in cloudy situations.

3.2. Splines//PCA Projection Interpolation Method

[32] The first step in this method is to use cubic spline
interpolation (section 2.2) in order to get a 24-hour data, �ys.

Figure 6. Anomaly of the surface skin temperature diurnal cycle for five surface types for January 1999
(left) and July 1999 (right).

Figure 7. Normalized surface skin temperature diurnal
cycle on shrubland surface type for January, April, July, and
October 1999.
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If there is only a few missing estimates in the cycle and if
the missing values are located at strategic times (i.e., close
to the maximum or the minimum of the diurnal cycle), this
procedure can provide a satisfactory reconstruction of the
complete diurnal cycle �ys from the incomplete one �y.
However, this spline interpolation cannot reduce the noise
in the observations, see section 2.3.2; in fact, it can be
sensitive to the noise, becoming very irregular and exhibit-
ing outliers. After this spline interpolation to obtain a
regular grid local time sampling, a second step is generally

recommended. It consists in projecting �ys into the PCA base
functions:

h ¼ G � �ys: ð3Þ

in order to suppress small-scale variability like synoptic
variations. The reconstruction ~y = G � h (see equation (1)) is
the resulting regularized 24-hours interpolated diurnal cycle.
[33] It is expected that this approach will be satisfactory

when only a few missing values are present. Figure 9 shows

Figure 8. Length of the day, PCA component 3, and width of the surface skin temperature diurnal
cycle, with respect to latitude, for January 1999 (top) and July 1999 (bottom).
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the difference between a spline interpolation using all
measurements and using incomplete data. The error in the
incomplete spline interpolation increases dramatically with
the number of missing values, especially when these are
located near the maximum or the minimum of the diurnal
cycle.

3.3. Algebraic//Statistical Methods

[34] The first step in this approach is to construct a set of
new PCA base functions, �G, interpolated at the local hours of
themeasurements in�y. Thatway, the incomplete diurnal cycle
�y does not need to be spline interpolated as in section 3.2,
which can cause problems when multiple observations are
missing. Cubic splines are then used to interpolate the PCA
base functions G into the transformed ones �G. PCA com-
ponents h are then calculated so that �y = �G � h. One
possibility to find such an h is to invert the matrix �G with
a size of M0 � 8, 8 being the number of DX measurements
over the day, and M0 the number of PCA components used
(determined by the user, 2 or 3 in our case). Since the matrix
�G is not square and possibly ill-conditioned, its inversion
might be difficult. However, many algebraic methods can be
used, e.g., the pseudoinverse, the regularized pseudoinverse,
or the SVD inverse [Aires, 1999]. If some statistical a priori
information is available, such as the a priori probability
distribution of the diurnal cycle, methods such as Bayesian
techniques can also be used to help regularize the matrix
�G inversion. Once �G�1 is determined, the PCA components
are just the projection:

h ¼ �G�1 � �y; ð4Þ

and the reconstruction ~y = G � h, is the resulting hourly
interpolated diurnal cycle using the M0 original PCA base
functions.

3.4. Iterative Methods

[35] Based on the same approach as described in section
3.3 (algebraic/statistical method), it is possible to use
optimization algorithms to estimate the PCA components
h such that �y = �G � h.
3.4.1. Quality Criterion
[36] The first step is to define a cost function to minimize:

C hð Þ ¼ DE �y; �G � hð Þ2þl � D h; hfg
� �

; ð5Þ

where DE is the Euclidean distance (other distances can be
used as well, see [Aires, 1999]. For example, if it is
expected that some of the measurements are for cloudy
conditions and some are for clear-sky, a distance that puts
less emphasis on outliers than the Euclidean distance is
recommended.), D is a generic distance (it is important here
that this distance takes into account the fact that the first
PCA component h1 is much more important than the
following ones. The Mahalanobis distance is a potential
candidate.), hfg is a priori information for the PCA
components, and l is the parameter controlling the relative
weight given to observations, �y, and the a priori informa-
tion, hfg. The term D(h, hfg) is a stabilizer constraining the
solution, h, to be close to the first-guess a priori
information, hfg [Tikhonov and Arsenin, 1977; Vapnik,
1998]. In order to estimate the optimal parameter l we
recommend performing some tests using using various
values of l for artificial data (so that the answer is known).
[37] The stabilizer, D(h, hfg), can also be used as an a

posteriori test for the quality of the solution, h. If D(h, hfg) is
too large, it can mean that the optimization has failed due to
numerical instabilities.
[38] One of the advantages of this method is that it starts

from a first-guess solution for h. This is very important
when the temperature measurement �y does not provide
enough information to complete the entire diurnal cycle.
This first-guess can be provided for example by a climato-
logical dataset. We will see in section 4.2 how important
this a priori information is for cloudy cases.
3.4.2. Optimization Algorithm
[39] Various algorithms can be used to minimize the

criterion, C(h), in equation (5): Metropolis algorithm, sim-
ulated annealing, stochastic gradient descent. A ‘‘determin-
istic gradient descent with momentum’’ is used here for its
speed and quality of results. The steps of this algorithm are
(1) estimate the gradient by finite differences: grad = (C(h +
�h) � C(h))/�h, (2) use the gradient descent hn+1 = hn �
r � grad + m � (hn � hn�1) to modify the current estimate hn,
and (3) repeat these first two steps until kC(hn+1) � C(hn)k
is lower than a threshold, t.

Table 2. RMS Error for the Estimation of the Mean Daily Skin

Temperature Yd and RMS Difference Between Daily and Monthly

Mean Skin Temperature, With Respect to the Number of Missing

Data in the Daily Diurnal Cycle Measurements

Number of
Missing Times

in Daily
Diurnal Cycle

RMS Error
for the

Estimation of Yd

RMS Difference
Between Estimate

~yd and Ym

0 0.00 1.92
1 0.26 1.94
2 0.40 1.96
3 0.54 1.99
4 0.69 2.04
5 0.90 2.12
6 1.20 2.26
7 1.85 2.66
8 1.92 0.00

Figure 9. Root mean square errors between a complete
diurnal cycle and its spline interpolation (from bottom to
top, N = 1 to 6 missing data).
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[40] First, the increments �h have to be defined. In this
study, this vector is nonzero in one element only, meaning
that grad is calculated by applying a perturbation on only
one element of h, i.e., on only one PCA component hi. We
start with the first component, h1, then the second, h2, etc.,
then repeat the cycle starting again on the first component.
[41] Second, the learning rate r has to be determined. If it

is too small, the optimization will be too slow (possibly the
optimum will not be reached) and the optimization search
will have difficulties escaping from local minima. If it is too
large, the optimization can oscillate from one side of the
‘‘valley’’ of the minima to the other side.
[42] The first element of the vector �h corresponds to the

learning step of the first PCA component that represents
amplitude information and a much larger percentage of
variability than the following components. Consequently,
this component deserves a larger learning rate r1 than the
other ones associated with higher order PCA components.
Here ri = l ið Þ

5
P

j
l jð Þ is selected (one–fifth of the explained

variance of component i), where l(i) is the diagonal ele-
ments of the eigen-values matrix L (see section 2.3). An
adaptative ri can also be used [Hertz et al., 1992].
[43] The so-called momentum term m � (hn � hn�1) in the

gradient descent adds inertia during the optimization. This is
similar, in practice, to increasing the size of the effective
learning rate r when the current solution hn is in a flat region
of the cost function during the minimization. The momen-
tum term also smoothes out potential oscillations occurring
when the optimization goes from one side of the minimum
‘‘valley’’ of the cost function to the other one. The inclusion
of a momentum generally improves significantly the per-
formance of the optimization. The momentum rate needs to
be between 0 and 1; m = 0.25 is selected here.
[44] A stochastic gradient descent algorithm can be

adopted instead of the deterministic version. It is generally
preferable to get to a global minimum, but in this applica-
tion, the first guess is good enough so that the local minima
provided by the determinist gradient is in the right region. In
addition, deterministic gradient descent is faster.
[45] Here t = 0.00001 is a good compromise between a

good fit and a reasonable number of iterations. This
stopping criterion is used once the modifications have been
done for each of the components; in this way, only one t
needs to be used. Otherwise, each component would require
a different t. The number of iterations is constrained to be
more than 1000 but less than 5000. During the gradient
descent, the best solution encountered is stored: sometimes,
it can differ from the last one.

4. Application to the Interpolation of the
Temperature Surface Skin Diurnal Cycle

[46] A database of examples is constructed to represent
different experimental situations in order to test which
interpolation algorithm works better, under which condi-
tions, and for what reasons.

4.1. Clear Sky

4.1.1. Methodology
[47] Only the spline/PCA method and the iterative

approaches are investigated. The algebraic/statistical
approach is not robust enough because of numerical insta-

bilities. To implement this method, it would be necessary to
regularize it using statistical information such as a priori
probability distribution functions, for example, in the
Bayesian context [Gelman et al., 1995]. In practice, the
statistical information is very difficult to estimate correctly
and exhaustively.
[48] For the iterative method, the stabilizer that constrains

the solution to be close to the a priori information is set to
zero (l = 0 in equation (5)) because the a priori information
coming from the use of hfg as a first-guess solution is
already a strong enough constraint. This depends upon the
experimental conditions and a stabilizer might be necessary
for another application.
[49] Only the first three PCA components are used: they

represent more than 97% of the variability in the ISCCP
climatological data set, they describe all the variability that
is of interest, and suppressing higher-order PCA compo-
nents regularizes the cycles and reduces the noise.
4.1.2. Data Set
[50] A data set of complete clear-sky daily diurnal cycles

yd is extracted from the DX data set described in section 2.1.
Each daily cycle is associated to its corresponding monthly
mean diurnal cycle ym. This data set represents 957,860
diurnal cycles for January 1999 over land. To test the
interpolation algorithms, one or more temperatures from
yd are artificially removed and then we try to retrieve the
correct diurnal cycle yd from the incomplete one �yd.
4.1.3. Results
[51] In a first experiment, the DX monthly diurnal cycles

of January 1999 over land are collected and one of the eight
3-hourly temperatures is suppressed. Figures 10 and 11
represent the RMS error of the spline/PCA and the iterative
interpolation methods for a missing observation at local
time T = 0, 7, 14, and 21, respectively. The error is generally
lower than 3 K for both methods, but the iterative algorithm
has better results for all local times. The spline/PCA
approach is sensitive to the time of the missing data,
whereas the iterative algorithm shows more robust statistics.
When T, the missing data time, is close to the maximum or
minimum of the cycle, the spline interpolation can miss the

Figure 10. Root mean square errors between PCA
reconstructed and spline/PCA interpolation for one-missing
data at local time T = 0,7, 14 and 21.
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amplitude of the cycle. In the iterative approach, the use of a
priori information of the PCA shapes from the climatology
helps the extrapolation of the extremum temperatures.
[52] The previous experiment is then repeated with mul-

tiple missing measurements instead of one. The times of the
missing values are randomly selected in the eight 3-hourly
measurements of DX data.
[53] Figures 12 and 13 present the RMS errors of the

spline/PCA and the iterative interpolation methods for
N-missing data, respectively. With the spline/PCA ap-
proach, the error increases rapidly with the number of
missing data from a mean RMS error of less than 2 K for
N = 0 to more than 6 K for N = 4. In contrast, the mean
RMS error for the iterative approach is quite stable between
1.5 and 2.5 K for missing values N � 4: the iterative method
benefits from the a priori information (the first-guess
solution from monthly diurnal cycle at the same location)
to compensate for the missing observations.
[54] In Figure 14, an example of interpolation when only

three measurements are available is presented (i.e., N = 5).

The times of the three measurements are close to the best
case (with one almost at the maximum and the two others
constraining the width of the cycle). Despite this choice, the
spline/PCA method fails because the three measurements
are not enough for the cubic spline algorithm to correctly
interpolate the cycle (first stage of the spline/PCA ap-
proach). In contrast, the iterative approach converges to
the correct diurnal cycle.
[55] An example of the curves representing the evolution

of the estimates of the estimates of the first three PCA
components h during the optimization of the iterative
approach are shown in Figure 15. The elements of h start
from the initial solution (i.e., the first-guess hfg), and then
evolve in order to minimize the cost function (equation (5)).
The associated RMS error R(h) between �y, the incomplete
measurements of skin temperature, and ~y = G � h, the
estimation of the diurnal cycle at the local times of the
measurements, is also shown. The optimization process
ends when the rate of decrease of R(h) becomes small.
[56] It is clear from these experiments that the most

promising technique for the interpolation of surface tem-
perature in clear sky is the iterative approach. In an
operational context, some quality control tests are recom-
mended such as the use of the stabilizer D(h, hfg) presented
in section 3.4.1 or a check based on the neighboring pixels:
some instabilities can occur when the data are of bad quality
(noise in observations or missing values at very bad times
such as the maximum or minimum surface temperature).

4.2. Cloudy Sky

[57] The iterative method is tested here for days that are
totally cloudy. Under cloudy conditions, the importance of
the a priori information precludes the use of the other
methods. In this study, we assume that microwave obser-
vations provide Ts estimate under cloudy sky [Aires et al.,
2001], with specific time sampling characteristics.
4.2.1. Creation of a Synthetic Data Set
[58] The efficiency of the interpolation technique in cloudy

cases will be evaluated on synthetic data because in order to
perform error statistics, the ‘‘correct’’ answer has to be known
and a dataset with an entire diurnal cycle of surface skin
temperature under cloudy conditions is not yet available.

Figure 11. Root mean square errors between PCA-
reconstructed and iterative interpolation for one-missing
data at local time T = 0,7, 14 and 21.

Figure 12. Root mean square errors between PCA-
reconstructed and spline/PCA interpolation for N-missing
data.

Figure 13. Root mean square errors between PCA-
reconstructed and iterative interpolation for N-missing data.
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[59] To test our algorithm, we first need to generate the
synthetic cloudy dataset. The shape of the diurnal cycle in
cloudy conditions is chosen to be the same as for clear
conditions. To generate this synthetic data set, we take the
mean levels Yd

cloudy and Yd
clear to be identical (changing this

parameter would not change the results of this experiment).
The presence of clouds decreases the diurnal cycle amplitude
of the surface skin temperature in clear sky by a factor, g:

ydcloudy ið Þ � Yd
cloudy ¼ g � ydclear ið Þ � Yd

clear

� �
;

for i ¼ 1; . . . ; 24:
ð6Þ

A damping coefficient g = 0.75 is selected to perform these
synthetic tests. It corresponds to a reduction of 25% of the
amplitude of the diurnal cycle in clear conditions.
4.2.2. N-Missing Data Experiment
[60] The clear-sky monthly mean diurnal cycle at the

same location is used as a priori information for the
interpolation experiment. Other authors also use clear-sky
information to derive the cloudy diurnal cycle using, for
example, time and/or space interpolation [Jin, 2000]. First,
the clear-sky monthly mean diurnal cycle is used to estimate
the mean level, Yd

cloudy, as in section 3.1. Then, the first
guess used in the iterative algorithm is the PCA projection:

hfg ¼ F � ymcloudy; ð7Þ

of the centered, damped, clear-sky monthly mean diurnal
cycle:

ymcloudy ið Þ ¼ g � ymclear ið Þ � Ym
clear

� �
;

for i ¼ 1; . . . ; 24:
ð8Þ

[61] Two tests are performed to assess the impact of a
good first-guess on the interpolation: one with the amplitude
of the cycle decreased by a factor g = 0.75 (supposed to be
known) and the other without it (g = 1.0) to assess the
sensitivity of the iterative algorithm to this a priori infor-
mation. Figures 16 and 17 represents the RMS error for the
iterative interpolation methods for N-missing data with and
without modification of the first guess for cloudy condi-
tions. Without correction, the amplitude of the diurnal cycle
is overestimated at the beginning of the iterative process,
potentially causing distortions since the convergence can be
trapped in local minima. When the first guess has been
damped to account for the cloudy conditions, the RMS error
is quite stable between 1.5 and 3 K for missing values N� 4,
as for the clear-sky case, and depending on local time.
These levels seem reasonable considering that
[62] 1. The missing values are chosen randomly over the

eight 3-hourly sample times. It is well understood that if the
temperature measurements around the minimum and max-
imum of the cycle are missing, the interpolation will not be
of good quality. However, this is legitimate; one cannot
invent information where none exists. With the maximum
and minimum temperature given, the error is much smaller.
The positive point is that we know the times of the
measurement and can derive an estimate of the quality of
the temporal interpolations. If a user of the interpolation
technique prefers to be conservative and to use the interpo-
lation only with smaller RMS scores, then he can use only
the observations that have good time locations, but this will
limit the number of situations that can be processed.
[63] 2. The remote sensing surface skin temperature

measurements have a RMS error close to 2K for clear sky
and are larger for cloudy situations. These levels of preci-

Figure 14. Example of interpolation using spline/PCA and iterative methods in the N-missing data
experiment. In this example, only three measurements were kept from the original 8 DX reported
temperatures (i.e., N = 5).
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Figure 15. Learning curves for the first three PCA components (a–c) associated to the corresponding
RMS error function R(h) (d).

Figure 16. Root mean square errors between PCA
reconstructed and Iterative interpolation in the synthetic
cloudy conditions, without correction of the first guess.

Figure 17. Root mean square errors between PCA
reconstructed and iterative interpolation in the synthetic
cloudy conditions, with correction of the first guess.
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sion seem to be in the order of what we can obtain with our
interpolation scheme.
[64] This experiment shows that a priori information for

the damping parameter g is important for the quality of the
diurnal cycle reconstruction under cloudy situations. We
will discuss, in section 4.2.4, some ways of obtaining this a
priori information.
4.2.3. Synthetic Experiment With Current and Future
Microwave Instruments
[65] At present and in the near future, passive microwave

satellite measurements are only performed from polar orbits,
thus limiting the number of overpasses per day at a given
location. All SSM/I instruments for instance are on board
polar satellites with Equator Crossing Times (ECT) close to
0630/1830 local times, even when there is more than one
satellite in orbit, except for the F-10 satellite that missed its
orbit and had its ECT increasing each year at a rate of 47 min
(corresponding to 0913/2130 local times on 1 January
1993). The AMSU (Advanced Microwave Sounding Unit)
channels are specifically selected for atmospheric sounding
not for surface retrievals. Two AMSU instruments are in
space, in quadrature with ECT at 0130/1330 and 0730/1930
local times. The reconstruction of the diurnal cycle of
surface skin temperature with AMSU is shown for illustra-
tive purposes: development of specific retrieval methods
would be required to use AMSU observations for Ts
retrieval. The Advanced Microwave Scanning Radiometer
(AMSR) on board the AQUA mission since May 2002 with
an ECT at 0130/1330 local times and the AMSR, launched
in December 2002 on board the ADEOS-II mission with an
ECT at 1030/2230 local times, could be used to retrieve
surface skin temperature.
[66] Figure 18 illustrates the RMS error of the iterative

approach for the reconstruction of the surface skin tempera-
ture diurnal cycle based on microwave measurements from
various combinations of instruments. The RMS values only
account for the time sampling errors (number of measure-
ments and time-location). Individual Ts retrieval errors are not
considered. The daily cycles have their amplitude damped
using equations (7) and (8) to simulate cloudy conditions.
When we use the time sampling of F11 SSM/I with an ECTat
0630 local time, the reconstruction of the diurnal cycle has
quite large RMS errors, between 1 and 6 K, due to a lack
of information around the time of maximum Ts. When
additional SSM/I measurements are available at a different
time from the F10 satellite, the errors decrease between 1 and
3 K, due to the additional constraint that the extra measure-
ments provide. In terms of time-sampling considerations, the
AMSU configuration is slightly worse than the 2 SSM/I
configuration. With only AMSR on board ADEOS II, recon-
struction of the diurnal cycle is only a little bit better than with
one SSM/I; combination with the AMSR measurements on
board AQUA reduces the error to between 0.5 and 3 K.
[67] The local times of the microwave measurements are

the key for a correct reconstruction of the Ts diurnal cycle
under cloudy conditions. With the new generation of
instrument such as AMSR, possibly coupled to the previous
generation of microwave instruments, the monitoring of Ts
diurnal cycle for all-weather conditions is possible.
4.2.4. A Priori Information Under Cloudy Situations
[68] A priori information (mean-level and first-guess hfg)

being particularly important for our iterative algorithm, we

comment on how to obtain this information when only
partial cloudy observations are available.
[69] The mean level of the daily diurnal cycle under

cloudy conditions, Y d
cloudy, can be estimated using the

procedure of ‘‘bias estimate under incomplete observation’’
method described in section 3.1. This procedure uses the a
priori information from the clear-sky monthly mean diurnal
cycle, ymclear; this is satisfactory if the cloud presence does
not change the shape of the diurnal cycle. If this is not the
case, a data set providing a cloudy-sky monthly mean
diurnal cycle, ymcloudy, is necessary. The creation of such
data set will be possible once a thorough microwave
measurement of the surface skin temperature diurnal cycle
becomes available.
[70] In order to have a priori information on the amplitude

damping coefficient g for each location, month, and surface
type, a possible approach would be to use in situ air
temperatures available from station measurements along
with cloud observations. Such a study has been performed
by Y. Zhang (personal communication, 2003), using the
reports from surface weather stations. The method uses
cloud fraction information to determine the diurnal cycle
change relative to clear-sky conditions This first attempt to
obtain a diurnal cycle of surface skin temperature for cloudy
pixel is a good first candidate for a good first guess when
interpolating a diurnal cycle in cloudy conditions. However,
using Tair instead of Ts (i.e., skin temperature) introduces a
bias since the amplitude of Tair is lower than the amplitude
of Ts.
[71] Another approach would be to use, as a priori

information, a climatology derived from microwave instru-
ments. Such climatology is not possible yet since passive
microwave measurements are not enough yet to provide a
full description of the diurnal cycle of surface skin temper-
ature. New instruments such as in the GPM (Global
Precipitation Mission) experiment will include TMI-like
microwave instruments with a 3-hourly sampling. These
measurements combined with an inversion scheme such as
the one described by Aires et al. [2001] will provide a full

Figure 18. Root mean square errors between PCA
reconstructed and iterative interpolation for SSMI only,
2 SSMI, AMSR from ADEOS II, and 2 AMSR from
ADEOS II + AQUA).

D04313 AIRES ET AL.: SURFACE SKIN TEMPERATURE DIURNAL CYCLE

16 of 18

D04313



climatology of mean-level and diurnal amplitude decrease
for a variety of cloudy conditions.

5. Conclusion and Perspectives

[72] The diurnal cycle of the surface skin temperature has
been analyzed, based on the global ISCCP 3-hourly Ts
estimates for clear scenes over a year. The statistical
characteristics of the diurnal cycle are extracted, using a
PCA decomposition. The first three PCA components
represent, respectively, the amplitude, the phase, and the
width (i.e., duration of the daytime portion) of the diurnal
cycle and explain 97% of the variability. Reprojection on
these three PCA components filters the data, suppressing
additional variability particularly measurement noise.
[73] The PCA decomposition coupled to an iterative

algorithm is developed to interpolate Ts diurnal cycles in
case of a limited number of measurements per day. This
temporal interpolation method is general and can be applied
to other problems, for time or spatial interpolations and for
other variables. The algorithm is based on statistics, and no
surface model is used.
[74] Our goal in this paper is to design an algorithm for the

temporal interpolation of diurnal cycles without any other
sources of information than the surface skin temperature
measurements themselves. We do not use surface model
constraints and we do not use ancillary data such as
vegetation, wind, or soil moisture. There are two very
important reasons for this: (1) we want to study whether
surface parameters like vegetation and soil moisture could be
inferred from the diurnal cycle of temperature so we cannot
use such ancillary data or surface models in the analysis
itself, (2) with future instruments (AQUA, TERRA) added to
the current ones, and with surface temperature retrievals
under cloudy conditions, we have or will soon have available
more than twice-daily measurements of the diurnal cycle.
Our technique aims at processing such new measurements
and to keep as much flexibility as possible: the time of the
measurements and their number are variable and the
surface conditions are unknown. The interpolation works
for monthly or daily data. It is possible to introduce first
guess information if available. This approach is very useful
for many reasons. For example, some practical questions can
be answered, like what kind of time sampling, in terms of
time-location or in terms of number of measurements, is
needed in the future to obtain a satisfactory diurnal cycle of
surface temperature.
[75] The effects of the number of measurements per day

and their time are analyzed. The method can be used for
instance to interpolate polar satellite IR Ts estimates to a full
diurnal cycle. The impact of the quality of the a priori
information is tested for cloudy days, a decrease of the
amplitude of the diurnal cycle in the first-guess improves
the results. It has been shown that reasonable Ts estimates
can be retrieved from passive microwave measurements
under cloudy conditions [Aires et al., 2001]. Combinations
of IR clear-sky Ts estimates and microwave Ts retrievals
under cloud cover then determine the full Ts diurnal cycle
globally, whatever the cloud cover. In clear-sky conditions,
the RMS error of the temporal interpolation algorithm is
quite stable between 1.5 and 2 K for N < 4 missing values
compared to a maximum of eight samples. For cloudy

situations, when the first guess is of good quality, for
example by damping the amplitude of a priori initial
condition taken from clear sky, the RMS error is quite
stable between 1.5 and 2 K for missing values N < 4, as for
the clear-sky case.
[76] A statistical analysis would be necessary to study the

impact of the presence of clouds on the mean-level and on
the amplitude of the diurnal cycle for cloudy scenes. Given
the lack of in situ or microwave Ts measurements, a
complete Ts diurnal cycle cannot yet be measured and
directly validated. In the near future, new microwave instru-
ments such as in GPM project will allow a complete
monitoring of the surface skin temperature diurnal cycle.
These data could be used to perform statistics on the mean
level, shape, and diurnal amplitude decrease. That informa-
tion could then be used as the a priori information needed
for an operation use of our iterative algorithm. This could
allow the use of previous measurements (like SMM/I
observations) for the construction of a much longer data
set of Ts diurnal cycle. One SSM/I instrument being
insufficient to reconstruct the entire diurnal cycle but two
being satisfactory, we think that our approach could provide
a data set from 1993 to present time.
[77] Two main studies can follow, using a data set of

surface skin temperature. First, we can analyze the potential
of the diurnal cycle to force SVAT schemes and eventually
to infer soil moisture. Since no model is used in the
interpolation algorithm, the diurnal cycle can be also used
either to evaluate SVAT schemes or to constrain surface
models. SVAT schemes now include detailed parameter-
izations of soil and canopy processes, along with their
interaction with the atmosphere. Mass and energy fluxes
at the land/atmosphere interface are strongly constrained by
the Ts diurnal cycle. The Ts diurnal cycle estimates can be
used in the models to help validate, update, or constrain the
Ts produced by the SVAT scheme at hourly scale for climate
or mesoscale applications. It would also help constrain the
soil moisture, given the strong relationship between the soil
moisture and the amplitudes of the Ts cycles. The Global
Soil Wetness Project (GSWP) initiative of the Global Land
Surface Study (GLSS) of GEWEX (Global Energy and
Water Experiment) for instance could benefit from this
independent Ts diurnal cycle data set.
[78] The second application of this work is climate

change studies. Once the full diurnal cycle of surface skin
temperature is known, including accurate determination of
the minimum and maximum values, it will be possible to
analyze at least a decadal time record of such values and to
compare them to the surface air temperature trends that are
today the main source of information to diagnose global
climate changes.

Notation
D Database of diurnal samples.
E Number of samples in D.
M Dimension of a ‘‘complete’’ diurnal cycle y.
N Number of missing data in the diurnal cycle.
y Generic temperature diurnal cycle (i.e., vector with

dimension M).
yd Daily temperature diurnal cycle (i.e., vector with

dimension M).
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ym Monthly mean temperature diurnal cycle (i.e.,
vector with dimension M).

�y Incomplete temperature diurnal cycle (i.e.,
vector with dimension M-N).

ys Twenty-four hour spline-interpolated diurnal
cycle.

~y Final interpolated/reconstructed diurnal cycle.
Yd Mean level of the daily temperature diurnal

cycle.
Ym Mean level of the monthly mean temperature

diurnal cycle.
h PCA components.

hfg The a priori first-guess PCA components.
M0 Number of PCA components used for the

interpolation.
� M � M covariance matrix.
V M � M eigen-vector matrix.
L M � M eigen-value diagonal matrix.
F PCA projection M0 � M matrix.

G = F�1 M0 � M matrix of the M PCA base funtions.
l Parameter controlling observation and a priori

information in iterative method.
DE, D Euclidean distance, generic distance.
C(h) Cost function used for the optimization.

t Threshold for the gradient descent.
r Learning rate for the gradient descent.
m Momentum rate for the gradient descent.

h�i Mathematical expectation.
t Transpose.
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